
Defining Cases and Variants for Object-Centric
Event Data

Jan Niklas Adams
Chair for Process and Data Science (PADS)
RWTH Aachen University, Aachen, Germany

niklas.adams@pads.rwth-aachen.de

Daniel Schuster
Institute for Applied Information Technology (FIT)

Fraunhofer, Sankt Augustin, Germany
daniel.schuster@fit.fraunhofer.de

Seth Schmitz , Günther Schuh
Laboratory for Machine Tools (WZL)

RWTH Aachen University, Aachen, Germany
{s.schmitz,g.schuh}@wzl.rwth-aachen.de

Wil M.P. van der Aalst
Chair for Process and Data Science (PADS)
RWTH Aachen University, Aachen, Germany

wvdaalst@pads.rwth-aachen.de

Abstract—The execution of processes leaves traces of event data
in information systems. These event data can be analyzed through
process mining techniques. For traditional process mining tech-
niques, one has to associate each event with exactly one object,
e.g., the company’s customer. Events related to one object form
an event sequence called a case. A case describes an end-to-end
run through a process. The cases contained in event data can be
used to discover a process model, detect frequent bottlenecks, or
learn predictive models. However, events encountered in real-life
information systems, e.g., ERP systems, can often be associated
with multiple objects. The traditional sequential case concept
falls short of these so-called object-centric event data since these
data exhibit a graph structure. One might force object-centric
event data into the traditional case concept by flattening it. How-
ever, flattening manipulates the data and removes information.
Therefore, a concept analogous to the case concept of traditional
event logs is necessary to enable the application of different
process mining tasks on object-centric event data. In this paper,
we introduce the case concept for object-centric process mining:
process executions. These are graph-based generalizations of
cases as considered in traditional process mining. Furthermore,
we provide techniques to extract process executions. Based on
these executions, we determine equivalent process behavior with
respect to an attribute using graph isomorphism. Equivalent
process executions with respect to the event’s activity are object-
centric variants, i.e., a generalization of variants in traditional
process mining. We provide a visualization technique for object-
centric variants. The contribution’s scalability and efficiency are
extensively evaluated. Furthermore, we provide a case study
showing the most frequent object-centric variants of a real-
life event log. Our contributions might be used as a basis to
adapt traditional process mining techniques by researchers and
to generate initial control-flow insights into object-centric event
logs by practitioners.

Index Terms—Object-centric process mining, variants

I. INTRODUCTION

Process mining [1] is an umbrella term for techniques
discovering knowledge about processes from event data that
these processes generated. These event data come as an event

The authors would like to thank the Marga und Walter Boll-Stiftung for
the kind support within the research project.

(a) Traditional event logs. (b) Object-centric event logs.
Fig. 1: Traditional event logs take the form of (a): Each event is
associated to exactly one object, called the case. Object-centric event
logs (b) drop this restriction, events can be associated to multiple
objects of different types.

log. Each event of an event log describes an activity executed
in the process, together with its associated data.

One of the most fundamental concepts in process mining are
cases. A case is an event sequence describing one observed
end-to-end behavior in a process. Each event is associated
to the object for which the event was conducted, e.g., the
customer. This object is called the case of the event and each
object can be associated to multiple events, forming the event
sequence of end-to-end behavior. The event sequences of all
objects are the fundamental starting point of many process
mining algorithms: control-flow visualization [2], i.e., frequent
sequences of conducted actions, bottleneck analysis [3], or
outcome prediction [4]. An event log in traditional process
mining exhibits the structure depicted in Fig. 1a: a collection
of event sequences, one for each case.

Object-centric event data [5] is a generalized form of
traditional event data. We drop the assumption that one event
can only be related to one object. Each object is still associated
to a sequence of events, but one event may belong to multiple

https://orcid.org/0000-0001-8954-4925
https://orcid.org/0000-0002-6512-9580
https://orcid.org/0000-0002-0179-0759
https://orcid.org/0000-0002-6076-0701
https://orcid.org/0000-0002-0955-6940

sequences. An example of the resulting structure of object-
centric event data is depicted in Fig. 1b. Some events are
shared between objects, e.g., event5. The sequential structure
of the event data is lost by dropping the assumption of single-
object association. The event data takes a graph structure.
Furthermore, objects are associated to different object types.
An information system may record data for the conducted
actions of objects of different types, e.g., products and delivery
objects in an ordering process. In traditional process mining,
all objects are assumed to be of the same type, e.g., all events
describe an action conducted for a customer, leading to homo-
geneous events. In object-centric event logs, the homogeneity
assumption is dropped, leading to differently typed objects and
events. In conclusion, traditional event data describe homo-
geneously typed event sequences, while object-centric event
data describe heterogeneously typed event graphs. Object-
centric event data is closer to the reality experienced in many
real-life information systems: It is encountered in production
processes [6], high volume manufacturing data [7], and order-
to-cash processes [8]. Object-centric event data exhibiting a
graph structure was already observed in [9], [10]

Most process mining techniques rely on the existence of
cases. To apply these techniques to object-centric event logs,
the case concept and object-centric event logs must be con-
nected. There are two ways to bridge the gap between the case
concept and object-centric event logs: Either moving object-
centric event logs to the traditional case concept or moving the
traditional case concept to object-centric event logs. First, one
can force object-centric event data into traditional event log
format, enforcing homogeneity and sequentiality. This is called
flattening [11]. Second, one can generalize the concept of cases
from homogeneous sequences to heterogeneous graphs and
adapt process mining techniques accordingly. When flattening
an object-centric event log, one chooses an object type (also:
case notion), removes events with no objects of this type, and
duplicates events with multiple objects of that type. The output
of flattening is a traditional event log. While flattening is fast
and straightforward, it manipulates the event data: information
about diversity in object types is discarded and a sequential
structure removes dependencies contained in the event data [8],
[11]. For these reasons, we aim to move the case concept
towards object-centric event data in this paper. We provide
the following contributions:

C1 We generalize the case concept of traditional process
mining from homogeneous sequences to heterogeneous
graphs for object-centric event logs. These are called
process executions.

C2 We provide a general approach for extracting process
executions from an object-centric event log. Furthermore,
we provide two specific extraction techniques.

C3 We use graph isomorphism to determine equivalent
process executions. Isomorphic graphs can be used to
group equivalent behavior, e.g., object-centric variants for
equivalent control-flow behavior.

C4 We propose an algorithm to visualize equivalent behavior

Fig. 2: Conceptual difference between our work and the current state-
of-the-art for process mining on object-centric event logs. Current
approaches flatten the event log leading to manipulated and removed
information. The generated results might, therefore, also be mislead-
ing. We propose a graph-based case concept for object-centric event
data called process executions. These can accurate represent object-
centric event data.

with a focus on visualizing object-centric variants. This
visualization is an extension of traditional variant visual-
ization.

These contributions aim to provide a foundation for moving
process mining from traditional event data to object-centric
event data. Using process executions, one may adapt existing
algorithms and create new algorithms to discover new insights
while leveraging the full, available information.

We discuss related work for this paper in Sec. II and
continue with basic definitions on object-centric event data in
Sec. III. These definitions build the basis for the introduction
of process executions and their extraction in Sec. IV. We dis-
cuss equivalent process executions and variant visualization in
Sec. V. The technical side of the contributions, i.e., scalability
and efficiency, are evaluated in Sec. VI. We demonstrate the
utility of our contributions in a case study in Sec. VII. We
conclude the paper in Sec. VIII and provide directions for
future contributions.

II. RELATED WORK

Object-centric process mining deals with generating insights
for event data with multiple objects. The problem of ob-
ject multiplicity in real-life information systems was already
formulated several years ago [12]. Early approaches dealt
with the problem from a modeling perspective [13], [14]
and with different object types being investigated separately.
Object-centric process mining introduced a data-driven way
to approach the problem and has recently gained attention [5],
[8], [9], [15], [16]. So far, different tasks of process mining
have been adapted to the object-centric setting. We group
these into three categories corresponding to this paper’s focus:
Approaches operating case agnostically, approaches working
with flattening [11] and approaches working with graphs
as case concept. The techniques that were introduced for
discovery [5] and conformance checking [10] work without
the explicit use of a case concept. Galanti et al. [15] propose
to flatten the event log to apply predictive process mining
techniques to the flattened event log. The flattened event data is

a traditional event log and can be used as input to all traditional
process mining techniques. However, flattening is associated to
the problems of deficiency, convergence. and divergence [11].
By not flattening the data and generalizing the case concept
to a graph, these problems can be avoided. The conceptual
differentiation between our work and previous work based on
flattening is depicted in Fig. 2. To the best of our knowledge,
we are the first paper defining a graph-based case concept and
variants for object-centric event data.

III. PRELIMINARIES AND EVENT DATA

Given a set X , a sequence σ ∈ X∗ of length n ∈ N assigns
an enumeration to elements of the set σ : {1, . . . , n} → X . We
use the notation σ=⟨σ1, . . . , σn⟩. For an element x ∈ X and a
sequence σ ∈ X∗, we overload the notation x ∈ σ, expressing
the occurrence of element x in the sequence x ∈ range(σ).

We are dealing with event data of different object types.
T defines the universe of types. There can be multiple in-
stantiations of one type. We refer to each instantiation as an
object. O defines the universe of objects. Each object is of
one type πtype : O → T . We define an event log containing
events and objects of different types, assigning each object to
an event sequence. E denotes the universe of event identifiers,
A denotes the universe of event attributes and V denotes the
universe of attribute values.

Definition 1 (Event Log). An event log L=(E,O, trace, attr)
is a tuple where

• E ⊆ E is a set of events,
• O ⊆ O is a set of objects,
• trace : O→E∗ maps each object to an event sequence,
• attr : E×A↛V maps event attributes onto values.

We define some further notations used throughout the paper.

Definition 2 (Further Notations). Let L=(E,O, trace, attr)
be an event log. We define the following notations:

• objL(e) = {o ∈ O | e ∈ trace(o)} for e ∈ E denote the
objects associated to an event.

• conL = {(e, e′) ∈ E×E | ∃o∈O trace(o) = ⟨e1, . . . , en⟩
∃1≤i<n e = ei ∧ e′ = ei+1} defines the directly-follows
relationships for all events and all objects.

An example of an event log is tabularly depicted in Fig. 3.
Multiple objects are given: o1, o2, m1, m2, m3, and m4.
Objects are of different types, e.g., o1 is of type Type1. Each
object is associated to a sequence of events, e.g., trace(o1) =
⟨e3, e4, e6⟩.

The right-hand side of Fig. 3 depicts the events enriched
with the information of objL and conL. The result is a graph
(also: event-object graph [10]), where the events form the
nodes, labeled with the object information. The edges are
formed by directly-follows relationships between events for an
object. This graph describes the dependencies between events.
Events with a path between them depend on each other, while
event pairs with an absence of a path are independent. For
example, e3 is a prerequisite for e4 and e5. However, e4 and
e5 have an arbitrary order. Since the object-centric event data

Event Attr. Object Types
. . . Type1 Type2

e1 . . . m1
e2 . . . m2
e3 . . . o1 m1, m2
e4 . . . o1
e5 . . . m1, m2
e6 . . . o1 m1, m2
e7 . . . o2 m3, m4
e8 . . . o2
e9 . . . m3
e10 . . . m4
e11 . . . m3, m4
e12 . . . o2 m3, m4

Fig. 3: Object-centric event log and the corresponding event-object
graph. Events following each other for one object are connected.

Fig. 4: Example of the object graph for Fig. 3. Each connected
subgraph, indicated by the dashed lines, can extract a process
execution.

exhibit a graph structure, we base our concept of a process
execution on a graph rather than a sequence.

IV. PROCESS EXECUTION EXTRACTION

This section introduces the concept of process executions
and techniques to extract process executions from an object-
centric event log. The case concept in traditional process
mining describes the event sequence for a single object. We
generalize this concept to process executions describing the
event graphs of multiple interdependent objects.

A. Process Executions

Before introducing the concept of a process execution, we
first define the relationships between objects through the object
graph. In this graph, objects form the nodes and are connected
if they share an event.

Definition 3 (Object Graph). Let L=(E,O, trace, attr) be an
event log. The object graph is an undirected graph OGL =
(O,CO) with CO={{o1, o2}⊆O | ∃e∈E o1, o2∈objL(e) ∧
o1 ̸=o2}. We denote the length of the shortest path between
to objects o, o′∈O′ in OGL with dist : O′ × O′ → R ∪ {⊥}
where ⊥ denotes the absence of a path.

Fig. 4 depicts an example of the object graph for the object-
centric event log in Fig. 3. The graph tells us which objects
co-appear in events and, therefore, which objects depend on
each other, directly and transitively.

We now generalize the case concept used for traditional
event data such that a process execution from an object-centric
event log covers multiple objects instead of one. However,
these objects must be co-dependent, i.e., they must form a
connected subgraph in the object graph. A process execution
is a graph formed from the events and their directly-follows
relationships for a set of connected objects.

Definition 4 (Process Execution). Let L=(E,O, trace, attr)
be an event log and O′ ⊆ O be a subset of objects that forms
a connected subgraph in OGL. The process execution of O′

is a directed graph pO′=(E′, D) where

• E′ = {e ∈ E | O′ ∩ objL(e) ̸= ∅} are the nodes, and
• D = conL ∩ (E′ × E′) are the edges.

The dashed lines in Fig. 4 indicate the different connected
subgraphs of the object graph that each may define a process
execution. As an example we focus on the black dashed
lines, i.e., the two connected components of the object graph.
Using each of these two object sets, we retrieve two process
executions, which are equal two the weakly connected com-
ponents of the event-object graph in Fig. 3. A selection of
different subgraphs leads to an extraction of different process
executions. This is by design, as object graphs and their
dependencies can grow very large. Splitting this graph apart
or selecting only some relationships of interest can be done
by only selecting specific subgraphs. In the following section,
we introduce two specific extraction techniques.

a) Process Executions Through Connected Components:
Our first technique retrieves the largest possible process execu-
tions, capturing all the dependencies and interactions contained
in the event data. We do this by determining the connected
components of the object graph. Each connected component
is used to extract one process execution. The connected
components of the object graph in Fig. 4 are indicated with
black dashes.

Definition 5 (Connected Component Extraction). Let L =
(E,O, trace, attr) be an event log and OGL = (O,CO) its
object graph. extcomp(L) = {pO′ | O′ ⊆ O∧ (O′, CO∩ (O′×
O′)) is a connected component of OGL} extracts process ex-
ecutions by connected components.

This technique has two main advantages. It is parameter-
free, i.e., no interaction of the user is required, and it captures
all dependencies between events and objects, forming a base
for extensive exploration of interdependencies in the resulting
process executions. However, this technique also comes with
disadvantages. Connected components in the object graph can
grow extremely big. In the worst case, the whole object graph
is one single component leading to the extraction of only one
single process execution. For these reasons, we introduce a
second technique of extracting process executions that neglects
some connections to retrieve smaller process executions.

b) Process Executions Through a Leading Type: Since
every connected subgraph of the object graph can be used
to extract process executions, we introduce a technique that
identifies subgraphs of the object graph that revolve around a
leading type. Such subgraphs have one node of an object of
the leading type that is connected to nodes of objects of other
types only by paths of the same length for each type. To find
these subgraphs, the object graph is traversed in a breadth-
first manner for each object of the leading type. Objects for
which objects of the same type were not already traversed in
an earlier level are added to the process execution and to the

breadth-first search. Other objects are discarded.

Definition 6 (Leading Type Extraction). Let L=(E,O, trace,
attr) be an event log, let OGL=(O,CO) be its object
graph and ot∈T be an object type. ext lead(L, ot)={pO′ |
o∈O ∧ πtype(o)=ot ∧ O′={o′∈O | dist(o, o′) ̸=⊥ ∧
¬∃o′′∈O πtype(o

′)=πtype(o
′′) ∧ dist(o, o′′)<dist(o, o′)} re-

trieves process execution through the leading type ot .

The idea behind these subgraphs is the following: For any
given object, the objects that are closest in the object graph
are assumed to be the ones with the most dependencies. These
close objects should be added to a process execution until
objects of the same type have already been added with a
shorter path length. In this way, the closest objects of each
(reachable) type are added. In Fig. 4, the subgraphs obtained
with the leading type technique for type Type1 are indicated
with black dashes, for type Type2 with red dashes. The light
blue dashed lines indicate other possible subgraphs that could
be used to extract process executions but are retrievable with
neither of the two introduced techniques.

V. OBJECT-CENTRIC VARIANTS

In general, determining similar process executions is a form
of clustering. Some general function fdist(p, p

′) can be used
to determine a distance between two process executions p, p′.
Based on these distances, clustering of process executions can
be performed. When speaking of equivalent process executions
we deal with a specific instance of this problem. Two process
executions can be equivalent with respect to an event attribute
a∈A if one cannot distinguish between the executions under
consideration of the event’s associated object types and the
event’s chosen attribute. If the considered attribute is the
event’s activity, one typically speaks of control-flow variants.
An fdist is necessary that yields a value of zero if and only
if process executions are equivalent. Process executions with
distance zero can subsequently be grouped into equivalence
classes. The problem of determining graph isomorphism ful-
fills these criteria.

A. Equivalence Class Mining

First, we boil a process execution down to type, order, and
attribute information by projecting it onto the event attribute
and types of the events.

Definition 7 (Projected Process Execution). Let L =
(E,O, trace, attr) be an event log, O′ ⊆ O be a set of objects
forming a connected subgraph in OGL and pO′ = (E′, D) the
corresponding process execution. For an attribute a ∈ A, the
projected process execution pO′↓a = (E′, D, le, ld) is defined
as a graph with two label functions:

• le(e) = (πattr(e, a), {(t, n) ∈ T × N0 | n = |{o∈O′ |
o∈objL(e) ∧ πtype(o)=t}|}) for e ∈ E′,

• ld((e1, e2)) = {(t, n) ∈ T × N0 | n = |{o∈O′ | o ∈
objL(e1)∧o∈objL(e2)∧πtype(o)=t}|} for (e1, e2) ∈ D.

Class Equivalence Class Visualization

1

Offer_1

Offer_2

Send invoice

ACA OCO WCIFOCre

OCre

AV WVA

Offer_2

Offer_1

WVA

OSMA

AI OCanAV OA AP

OR OA

OSMA WCAO

WCAO ACom OCO OCre

OCre

OCan

OCan…

Place
order

Place
order

Place
order

Produce
on dem.

Produce
on dem.

Pickup

Pickup

Pay

Pay

Pay Machine_2

Machine_1

Order

Second
Machine

Offer_1

Offer_2

Send
invoice

Place
order

Place
order

Place
order

Pickup

Pickup

Pay

Pay

Pay Machine_2

Machine_1
Produce
to stock

Produce
to stock

First
Machine

2

Offer_1

Offer_2

Send invoice

ACA OCO WCIFOCre

OCre

AV WVA

Offer_2

Offer_1

WVA

OSMA

AI OCanAV OA AP

OR OA

OSMA WCAO

WCAO ACom OCO OCre

OCre

OCan

OCan…

Place
order

Place
order

Place
order

Produce
on dem.

Produce
on dem.

Pickup

Pickup

Pay

Pay

Pay Machine_2

Machine_1

Order

Second
Machine

Offer_1

Offer_2

Send
invoice

Place
order

Place
order

Place
order

Pickup

Pickup

Pay

Pay

Pay Machine_2

Machine_1
Produce
to stock

Produce
to stock

First
Machine

Table I: Example of the visualization of two variants for ordering
machines using the activity attribute.

Two process executions p, p′ that are equivalent with respect
to an attribute a∈A if p↓a and p′↓a are isomorphic under
consideration of the node and edge labels.

Graph isomorphism is a well-studied problem in computer
science for which, up to this point, no general polynomial-
time algorithm is known [17]. For the problem of determining
groups of isomorphic graphs from a set of graphs, the naive so-
lution would be to conduct a one-to-one isomorphism match-
ing for each pair of graphs. We, however, employ a technique
introduced by Rensink [18] in the GROOVE framework. This
two-step technique first calculates an invariant hash code for
each graph. Graphs with different hash codes can not be
isomorphic. However, this does not mean graphs with the same
hash code are isomorphic. Therefore, the initial equivalence
classes of graphs with equal hash codes are refined through
one-to-one comparisons. An additional benefit of employing
this idea is retrieving an approximation of the equivalence
classes by the initial, unrefined classes of the hash codes. The
Weisfeiler-Lehman graph hashing [19] is used as a hashing
function. We use the VF2 algorithm [20] for refinement of the
initial classes, as it has shown superior performance for small,
sparse graphs [21]. We verify the results by conducting a one-
to-one comparison with the VF2 algorithm. As the calculation
of graph hashes is known to have scalability problems for some
graphs [22], we compare the running times of the employed
two-step technique with a one-to-one checking using the VF2
algorithm.

We denote this two-step function to derive equivalence
classes by isoa:{p1, . . . , pn}→{1, . . . ,m}, retrieving m≤n
equivalence classes for process executions {p1, . . . , pn} and an
attribute a ∈ A. An equivalence class is a set of process execu-
tions EQa={p1, . . . , pk} such that isoa(p1)= . . .=isoa(pk).
The set of all mined equivalence classes is denoted by EQa.
The relative frequency of an equivalence class EQa∈EQa is
given by

fEQa
=

|EQa|∑
EQ′

a∈EQa
|EQ′

a|
.

B. Variant Visualization

The techniques introduced before allow us to determine fre-
quent process executions w.r.t. an event attribute. However, the
mathematical object retrieved by these techniques is a graph

Algorithm 1 Horizontal positioning of events
Require: pO′↓a - projected process execution, e∈E - event
Ensure: xstart, xend horizontal position for the event
xstart ← GET X START(pO′↓a, e)
xend ← GET X END(pO′↓a, e)
function GET X START(pO′↓a, e)

pre ← predecessors of e in pO′↓a
if |pre| = 0 then

return x=0
end if
return max(GET X START(pO′↓a, e′) for e’ in pre)+1

end function
function GET X END(pO′↓a, e)

suc ← successors of e in pO′↓a
if |suc| = 0 then

return GET X START(pO′↓a, e′)
end if
return min(GET X START(pO′↓a, e′) for e’ in suc)−1

end function

with complex edge and node labels. These graphs are hard
to interpret and understand, especially with increasing size.
Therefore, we focus on delivering an improved visualization
for control-flow variants using the activity attribute. To provide
an accessible and understandable visualization, we introduce
an extension of variant visualization used in process mining
and business process management [2], [23] for control-flow
variants. Traditionally, variants are visualized as a sequence
of chevrons containing the activity labels.

An example of the result from the proposed visualization
technique is depicted in Table I for two variants. There are two
object types: orders (blue) and machines (green). Both variants
have two objects of type machine, indicated by different
shades of green. In the first variant, an order is placed for
two machines. While an invoice for the order is sent, the
machines are each produced and picked up concurrently, i.e.,
these events happen in an arbitrary order. For example, sending
the invoice is not dependent on the production of any of the
machines. To conclude, the order for both machines is paid.
In the second variant, the machines are produced to stock in
the beginning.

In our visualization, each type has a specific base color,
and each object of such a type has a particular shade of
the base color. Each object has a lane showing the event
sequence for the object. Each event is depicted as a chevron
with the activity label inside the chevron. If an event is shared
between objects, it is placed on all corresponding object lanes
and colored with the corresponding colors. The shared events
are placed at the same horizontal position to respect the
partial orders between events. Since the horizontal position
of events depends on the previously occurring shared events
and their predecessors, we introduce a layouting algorithm
to determine the horizontal positions of events. The objects
determine the vertical position, each object is associated to

Data Set Number of Number of Number of Extraction Technique Number of Events per Execution Objects per Execution Number of
Events Types Objects Executions (max, min, avg) (max, min, avg) Variants

DS1 Loan Application Process 507553 2 67498
Connected components 28509 (61, 7, 17.8) (11, 2, 2.4) 3420
Leading type: Application 28509 (61, 7, 17.8) (11, 2, 2.4) 3420
Leading type: Offer 38989 (56, 7, 18.7) (2, 2, 2) 7763

DS2 Order Management Process 22367 3 11484

Connected components 83 (1382, 8, 269.5) (717, 3, 138.4) 83
Leading type: Items 8159 (155, 8, 57.9) (11, 3, 6) 8155
Leading type: Orders 2000 (179, 8, 51.3) (68, 3, 19.4) 1998
Leading type: Packages 1325 (155, 8, 49.7) (32, 3, 10.5) 1325

DS3 Customer Incident Management 119998 2 25598
Connected components 4825 (259, 2, 24.3) (53, 2, 5.1) 3388
Leading type: Incident 19966 (144, 2, 25.2) (3, 2, 2) 16935
Leading type: Customer 4826 (259, 2, 24.3) (53, 2, 5.1) 3389

DS4 Farmer Subsidies Process 852610 6 58747

Connected components 14507 (2973, 31, 58.8) (22, 3, 4.2) 7274
Leading type: Payment Application 14507 (2973, 31, 58.8) (22, 3, 4.2) 7274
Leading type: Control summary 14507 (2973, 31, 58.8) (22, 3, 4.2) 7274
Leading type: Entitlement application 205 (279, 43, 68.6) (9, 5, 5.1) 190
Leading type: Geo parcel document 14507 (2973, 31, 58.8) (22, 3, 4.2) 7274
Leading type: Inspection 1999 (2941, 48, 155.2) (6, 5, 5) 1955
Leading type: Reference Alignment 14503 (2973, 31, 58.8) (22, 4, 4.2) 7270

Table II: Overview of extracted process executions for different techniques, their properties, and variants.

Fig. 5: Running times of execution extraction for different subset
sizes, logs, and extraction techniques.

one unique vertical position grouped by type. Algorithm 1
describes retrieve the starting and ending horizontal position
of an event. The starting position is determined recursively
based on the predecessor events. The ending position is based
on the starting position of the successor events.

VI. ALGORITHMIC EVALUATION

In this section, we evaluate the four contributions proposed
in this paper. We use four event logs described in Table II.
Three of them, DS1 [24], DS3 and DS4 [25], are real-life
event logs, while DS2 is a synthetic event log, consisting of
an especially high amount of connected objects and variability.
First, we evaluate the results and running times of the different
process execution extraction techniques. Then, we evaluate
our employed two-step equivalence class calculation technique
[18] and compare the running time to a one-to-one matching
using the VF2-algorithm [20]. We use the event activity
attribute for each data set to determine equivalence classes,
i.e., we calculate variants. At last, we show the running times
of our equivalence class layouting algorithm. Our experiments
and data sets are publicly available on GitHub1. The tool
OCπ [26]2 can be used to explore the individual variants of

1https://github.com/niklasadams/OCCasesAndVariants.git
2https://www.ocpi.ai

the different event logs in and end-to-end application of our
contributions.

A. Process Execution Extraction

Table II depicts the number of executions, the maximum,
minimum, and average number of events and objects per
execution for all data sets, and the two introduced execu-
tion extraction techniques. For leading type, the extraction
is performed for each type. For some data sets, like DS1,
the results are quite similar. However, for DS2 the raw data
contains large connected components where many objects
get entangled, visible by the low number of executions with
connected components and their high average number of
events. Using leading type, the executions increase in number
but decrease in size, allowing for a tighter focus.

Fig. 5 shows the running times for each execution extraction
technique for different sizes of each event log. Line plots
without a marker refer to connected components extraction.
A linear development of the running times can be observed
for the given sublogs. A relationship of the slope and charac-
teristics of the event logs, e.g., the average size of executions,
seems likely. In general, the extraction by leading types is
slightly faster than connected components. Both, connected
components and leading type, show promising scalability for
the application on real-life event data.

B. Variants

In this section, we first discuss the number of variants
calculated for each event log. We then compare the results
of our employed two-step technique with a baseline technique
of determining isomorphic graphs from a set of graphs.

For the real-life logs, i.e., DS1, DS3, and DS4, the
number of variants is often significantly smaller than the
number of executions (cf. Table II). This observation shows
that these types of event data contain several equivalent
process executions. Only for the synthetic data set DS2

the number of equivalence classes is almost the number of
process executions. Through this event log’s highly entangled
and interconnected nature, almost no process execution is
equivalent to any other execution. A clustering or subgraph
mining approach might be more suited for such extreme cases.

https://github.com/niklasadams/OCCasesAndVariants.git
https://www.ocpi.ai

(a) DS1 (b) DS2 (c) DS3 (d) DS4

Fig. 6: Running times of the two-step algorithm compared to the VF2-algorithm for determining isomorphism.

Fig. 7: Running time of the layouting algorithm depending on the
number of events and the number of objects, indicated by the size
and color of the points. The running times are collected over all event
logs and variants.

We evaluate our employed technique’s correctness and run-
ning time against a baseline. This baseline works similarly to
the two-step technique. However, it starts with all executions
in one equivalence class and then refines it. While doing so,
it performs a matching under consideration of edge and node
labels using the VF2-algorithm.

Fig. 6 depicts the running times for our employed technique
and the baseline, i.e., VF2, for each event log. The measures
are collected by calculating equivalence classes for different
subset sizes of the process executions from different extraction
techniques. Generally, the two-step approach shows good
scalability and efficiency compared to the baseline technique.

C. Variant Visualization

In this section, we evaluate the scalability of our variant lay-
outing algorithm. We perform the layouting for all executions
retrieved for all logs by extracting connected components. We
sort the running times for each equivalence class based on the
number of events in a corresponding process execution and
plot the results in Fig. 7. Furthermore, each point is colored
and sized according to the number of objects associated with
the equivalence class. We observe increasing running times
with an increase of events and objects. In general, the results
show promising scalability of the layouting.

VII. END-TO-END APPLICATION

This section showcases the end-to-end application of our
contributions to an event log to retrieve insights about the most

frequent variants. We use the event log provided by DS1. This
data set describes customers applying for loans in a financial
institution. After assessing an application, a loan offer is made.
This offer can be accepted, refused, or canceled. Subsequently,
new offers for the same application can be made. We use
connected components/leading type application (both lead to
the same result) to extract process executions. We extract the
object-centric variants and visualize them using our layouting
algorithm. Table III depicts the results.

11%, which amounts to more than 3000 process executions,
show equivalent behavior: After some application steps are
performed, an offer is created and sent to the customer. After
a phone call, the application and the offer are canceled.
However, in the second most frequent execution, the offer is
returned and accepted after the phone call. Executions with
multiple offers are also relatively frequent. The fourth and
fifth depicted equivalence classes show executions where the
second offer is canceled or accepted. The variant visualization
provides intuitive insights into the creation and concurrency
of objects.

VIII. CONCLUSION

This paper presented four contributions to translate the
concept of cases and variants to object-centric event data. The
case concept is generalized to process executions which are
event graphs of multiple, dependent objects. We use connected
subgraphs of the object graph to extract process executions
and provide two specific algorithms. Using graph isomorphism
algorithms we can determine equivalent process executions.
We use these algorithms to determine object-centric variants
and propose a visualization extending traditional variant visu-
alization. In Sec. VII, we provided an end-to-end application
of all these contributions to visualize the object-centric variants
of a loan application process.

The work presented in this paper can be extended in
two major directions: Additional extraction techniques and
different clustering techniques. The two extraction techniques
introduced are just two of many possible ones that could
extract patterns of interest from the object graph. Our equiv-
alence class calculation is one specific type of clustering.
Process executions could be clustered in other ways based
on other distance measures. Clustering would also help with
generating insights for highly entangled event sequences.

Activity abbreviations: ACA = Create Application, AS = Application Submitted, ACon = Application Concept, WCA = Application Workflow
Completed, AA = Application Accepted, OCO = Create Offer, OCre = Offer Created, OSMO = Offer Sent Mail & Online, WCAO = Calling
After Offer, ACom = Application Complete, ACan = Application Cancelled, OCan = Offer Cancelled, OR = Offer returned, WVA = Validate
Application, AV = Validating, WCIF = Calling for Incomplete Files, AI = Application Incomplete, OA = Offer Accepted, AP = Pending
Variant number (corresponding frequency) & visualized object-centric variant

1
(11%)

ACA AS ACon WCA AA OCO

OSMA

ACom ACanOCre

OCre

WCAO

WCAO OCan

OCan

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV WCIF AI WVA AV OA

OA

AP

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV OA

OA

AP

ACA OCO

OSMA

AComOCre

OCre

WCAO OCan

Offer_2

Offer_1

WCAO

OCre

OCre OSMA

ACan OCan

OCan

OCan

ACA OCO WCIFOCre

OCre

AV WVA

Offer_2

Offer_1

WVA

OSMA

AI OCanAV OA AP

OR OA

OSMA WCAO

WCAO ACom OCO OCre

OCre

OCan

OCan

…

…

Application
First Offer

Second Offer

2
(5%)

ACA AS ACon WCA AA OCO

OSMA

ACom ACanOCre

OCre

WCAO

WCAO OCan

OCan

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV WCIF AI WVA AV OA

OA

AP

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV OA

OA

AP

ACA OCO

OSMA

AComOCre

OCre

WCAO OCan

Offer_2

Offer_1

WCAO

OCre

OCre OSMA

ACan OCan

OCan

OCan

ACA OCO WCIFOCre

OCre

AV WVA

Offer_2

Offer_1

WVA

OSMA

AI OCanAV OA AP

OR OA

OSMA WCAO

WCAO ACom OCO OCre

OCre

OCan

OCan

…

…

Application
First Offer

Second Offer

3
(4%)

ACA AS ACon WCA AA OCO

OSMA

ACom ACanOCre

OCre

WCAO

WCAO OCan

OCan

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV WCIF AI WVA AV OA

OA

AP

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV OA

OA

AP

ACA OCO

OSMA

AComOCre

OCre

WCAO OCan

Offer_2

Offer_1

WCAO

OCre

OCre OSMA

ACan OCan

OCan

OCan

ACA OCO WCIFOCre

OCre

AV WVA

Offer_2

Offer_1

WVA

OSMA

AI OCanAV OA AP

OR OA

OSMA WCAO

WCAO ACom OCO OCre

OCre

OCan

OCan

…

…

Application
First Offer

Second Offer

14
(2%)

ACA AS ACon WCA AA OCO

OSMA

ACom ACanOCre

OCre

WCAO

WCAO OCan

OCan

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV WCIF AI WVA AV OA

OA

AP

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV OA

OA

AP

ACA OCO

OSMA

AComOCre

OCre

WCAO OCan

Offer_2

Offer_1

WCAO

OCre

OCre OSMA

ACan OCan

OCan

OCan

ACA OCO WCIFOCre

OCre

AV WVA

Offer_2

Offer_1

WVA

OSMA

AI OCanAV OA AP

OR OA

OSMA WCAO

WCAO ACom OCO OCre

OCre

OCan

OCan

…

…

Application
First Offer

Second Offer

35
(0.4%)

ACA AS ACon WCA AA OCO

OSMA

ACom ACanOCre

OCre

WCAO

WCAO OCan

OCan

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV WCIF AI WVA AV OA

OA

AP

ACA AS ACon WCA AA OCO

OSMA

AComOCre

OCre

WCAO

WCAO OR

WVA AV OA

OA

AP

ACA OCO

OSMA

AComOCre

OCre

WCAO OCan

Offer_2

Offer_1

WCAO

OCre

OCre OSMA

ACan OCan

OCan

OCan

ACA OCO WCIFOCre

OCre

AV WVA

Offer_2

Offer_1

WVA

OSMA

AI OCanAV OA AP

OR OA

OSMA WCAO

WCAO ACom OCO OCre

OCre

OCan

OCan

…

…

Application
First Offer

Second Offer

Table III: The three most frequent object-centric variants in the loan application process. Additionally, we depict two variants with multiple
offers for one application. Activities are abbreviated using the first letters.

Cases are essential for traditional process mining tech-
niques. With this paper, we provide a technique to extract
the object-centric equivalent of cases. These can be used to
adapt existing process mining techniques to the object-centric
setting and develop new techniques providing novel insights.

REFERENCES

[1] W. M. P. van der Aalst, Process mining: Data science in action.
Springer, 2016.

[2] D. Schuster, S. J. van Zelst, and W. M. P. van der Aalst, “Cortado -
an interactive tool for data-driven process discovery and modeling,” in
PETRI NETS. Springer, 2021, pp. 465–475.

[3] A. Senderovich, M. Weidlich, L. Yedidsion, A. Gal, A. Mandelbaum,
S. Kadish, and C. A. Bunnell, “Conformance checking and performance
improvement in scheduled processes: A queueing-network perspective,”
Inf. Syst., vol. 62, pp. 185–206, 2016.

[4] N. Tax, I. Verenich, M. L. Rosa, and M. Dumas, “Predictive business
process monitoring with LSTM neural networks,” in CAiSE. Springer,
2017, pp. 477–492.

[5] W. M. P. van der Aalst and A. Berti, “Discovering object-centric Petri
nets,” Fundam. Informaticae, vol. 175, no. 1-4, pp. 1–40, 2020.

[6] G. Schuh, A. Gützlaff, S. Cremer, S. Schmitz, and A. Ayati, “A data
model to apply process mining in end-to-end order processing processes
of manufacturing companies,” in IEEM. IEEE, 2020, pp. 151–155.

[7] Q. Qi and F. Tao, “Digital twin and big data towards smart manufacturing
and industry 4.0: 360 degree comparison,” IEEE Access, vol. 6, pp.
3585–3593, 2018.

[8] P. Waibel, L. Pfahlsberger, K. Revoredo, and J. Mendling, “Causal
process mining from relational databases with domain knowledge,”
CoRR, vol. abs/2202.08314, 2022.

[9] S. Esser and D. Fahland, “Multi-dimensional event data in graph
databases,” J. Data Semant., vol. 10, no. 1, pp. 109–141, 2021.

[10] J. N. Adams and W. M. P. van der Aalst, “Precision and fitness in
object-centric process mining,” in ICPM. IEEE, 2021, pp. 128–135.

[11] W. M. P. van der Aalst, “Object-centric process mining: Dealing with
divergence and convergence in event data,” in SEFM. Springer, 2019,
pp. 3–25.

[12] W. M. P. van der Aalst et al., “Process mining manifesto,” in BPM
Workshops. Springer, 2011, pp. 169–194.

[13] D. Fahland, “Describing behavior of processes with many-to-many
interactions,” in PETRI NETS. Springer, 2019, pp. 3–24.

[14] E. H. J. Nooijen, B. F. van Dongen, and D. Fahland, “Automatic discov-
ery of data-centric and artifact-centric processes,” in BPM Workshops,
M. L. Rosa and P. Soffer, Eds. Springer, 2012, pp. 316–327.

[15] R. Galanti, M. de Leoni, N. Navarin, and A. Marazzi, “Object-centric
process predictive analytics,” CoRR, vol. abs/2203.02801, 2022.

[16] G. Park, J. N. Adams, and W. M. P. van der Aalst, “OPerA: Object-
centric performance analysis,” CoRR, vol. abs/2204.10662, 2022.

[17] M. Grohe and D. Neuen, “Recent advances on the graph isomorphism
problem,” CoRR, vol. abs/2011.01366, 2020.

[18] A. Rensink, “Isomorphism checking in GROOVE,” Electron. Commun.
Eur. Assoc. Softw. Sci. Technol., vol. 1, 2006.

[19] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” J. Mach. Learn.
Res., vol. 12, pp. 2539–2561, 2011.

[20] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An improved
algorithm for matching large graphs,” in IAPR-TC15, 2001, pp. 149–
159.

[21] P. Foggia, C. Sansone, and M. Vento, “A performance comparison of five
algorithms for graph isomorphism,” in IAPR TC-15, 2001, pp. 188–199.

[22] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” Int. J. Pattern Recognit. Artif. Intell.,
vol. 18, no. 3, pp. 265–298, 2004.

[23] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals
of Business Process Management, Second Edition. Springer, 2018.

[24] B. van Dongen, “BPI challenge 2017,” https://doi.org/10.4121/uuid:
5f3067df-f10b-45da-b98b-86ae4c7a310b.

[25] ——, “BPI challenge 2018,” https://doi.org/10.4121/uuid:
3301445f-95e8-4ff0-98a4-901f1f204972.

[26] J. N. Adams and W. M. P. van der Aalst, “Ocπ: Object-centric process
insights,” in PETRI NETS. Springer, 2022, pp. 139–150.

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972

	Introduction
	Related Work
	Preliminaries and Event Data
	Process Execution Extraction
	Process Executions

	Object-Centric Variants
	Equivalence Class Mining
	Variant Visualization

	Algorithmic Evaluation
	Process Execution Extraction
	Variants
	Variant Visualization

	End-to-End Application
	Conclusion
	References

