
Addressing Convergence, Divergence, and
Deficiency Issues

Jan Niklas Adams[0000−0001−8954−4925] and Wil M.P. van der
Aalst[0000−0002−0955−6940]

Chair of Process and Data Science, RWTH Aachen University, Aachen, Germany
{niklas.adams,wvdaalst}@pads.rwth-aachen.de

Abstract. The application of process mining algorithms to event logs
requires the extraction of cases, describing end-to-end runs through the
process. When extracting cases for object-centric event data, this ex-
traction is often subject to convergence, divergence, and deficiency is-
sues. Recently, connected-components extraction was proposed, extract-
ing graph-based cases, called process executions, from the graph of event
precedence constraints. This paper shows that only case extraction based
on connected-components is free of convergence, divergence, and defi-
ciency issues. This proof has several implications for future research in
object-centric process mining. First, if a downstream process mining task
is negatively affected by these quality issues, connected-components ex-
traction is the only way to mitigate these. Second, additional require-
ments that would conflict with connected-components extraction would
render the mitigation of quality issues infeasible, making trade-offs be-
tween quality issues necessary. Third, as traditional event logs are a
special case of object-centric event logs and connected-components ex-
traction is equivalent to the traditional case concept for a traditional
event log, new extraction techniques, as well as object-centric adapta-
tions of algorithms, should be backward-compatible.

Keywords: Object-Centric Process Mining · Event Data · Flattening

1 Introduction

In most information systems, events are documented in relation to multiple
entities, or objects [8]. Process mining algorithms require input in the form of
cases, which are sets of events with precedence constraints. When each event
is connected to precisely one object, case extraction is trivial as every object
defines its own case [1]. However, when multiple objects are linked to a single
event, extraction becomes problematic. For example, extracting one case per
object results in event duplication when an event is associated with two objects.

Previous research has identified three quality problems when extracting cases
from event data with multiple objects per event (object-centric event data): con-
vergence, deficiency, and divergence [2,11,8]. These quality problems can lead to
challenges in downstream process mining tasks due to cases containing inaccu-
rate data.

2 J.N. Adams and W.M.P. van der Aalst

Adams et al. have proposed connected-components process execution extrac-
tion [5]. This extraction merges all events and precedence constraints connected
through common objects into graph-based cases, called process executions. In this
paper, we show that connected-components extraction is free of convergence, di-
vergence, and deficiency issues and that all extraction techniques not based on
connected components do not meet the requirements of being convergence, di-
vergence, and deficiency-free. We situate these findings with respect to the fields
of object-centric and traditional process mining and discuss the implications of
our proof for the field of process mining.

2 Event Data

A sequence of length n ∈ N is a function σ : {1, . . . , n} → X. We denote a
sequence with σ = ⟨x1, . . . , xn⟩. Sequences can be concatenated, denoted by
⟨x1, . . . , xn⟩ · ⟨y1, . . . , ym⟩ = ⟨x1, . . . , xn, y1, . . . , ym⟩. A sequence δsub = ⟨y1, . . . ,
ym⟩ is a subsequence of δsup = ⟨x1, . . . , xn⟩ if the complete δsub can be mapped
to consecutive indices of δsup , i.e., ∃i∈{0,...,n−m} ∀j∈{1,...,m}xi+j = yj . We denote
this by δsub ∈ δsup . The powerset of a set X defines the set of all possible sets and
is denoted by P(X). The power set without the empty set is denoted by P+(X).
A directed graph is a tuple G = (E,K) of nodes E and edges K ⊆ E×E. A path
between two nodes e, e′ ∈ E describes a sequences of nodes that are connected
by edges e ∼G e′ = ⟨e1, . . . , en⟩ such that e1 = e∧en = e′∧∀1≤i<n(ei, ei+1) ∈ K.
We abbreviate the existence of a path with e ∼G e′. If there is no path between
two nodes e, e′ ∈ E then e ≁G e′. We explicitly define the path from a node to
itself as e ∼G e = ⟨e⟩.

Lemma 1 (Connecting Edge). Let G = (E,K) be a graph and e, e′ ∈ E
be two nodes. There is a set of events E′ ⊆ E with e′ being part of the set
and e not being part of the set: e ∈ E \ E′ ∧ e′ ∈ E′. If there exists a path
between e and e′ then there is an edge that connects the two sets E \E′ and E′:
e ∼G e′ ⇒ ∃(e1,e2)∈K e1 ∈ E \ E′ ∧ e1 /∈ E′ ∧ e2 ∈ E′ ∧ e2 /∈ E \ E′.

Proof. The path between e, e′ ∈ E is e ∼G e′ = ⟨e1, . . . , en⟩ such that e1 =
e∧en = e′∧∀1≤i<n(ei, ei+1) ∈ K. Each node of E is either part of E′ or E\E′. We
prove by contradiction: If there would not exist an edge that connects both sets,
all elements in the path would need to be of the same set: ¬∃⟨e1,e2⟩∈e∼Ge′ e1 ∈
E \E′′∧e2 ∈ E′′ ⇒ {e1, . . . en} ⊆ E \E′∨{e1, . . . en} ⊆ E′. However, e1 ∈ E \E′

and en ∈ E′, i.e., there is at least on element of both sets in e ∼G e′. Therefore,
∃(e1,e2)∈K e1 ∈ E \ E′ ∧ e1 /∈ E′ ∧ e2 ∈ E′ ∧ e2 /∈ E \ E′.

Lemma 2 (Transitivity). Let G = (E,K) be a graph and e, e′ ∈ E be two
nodes with e ≁G e′ with E1 = {e′′ ∈ E | e ∼G e′′ ∨ e′′ ∼G e} and E2 = {e′′ ∈
E | e′ ∼G e′′ ∨ e′′ ∼G e′}. The reachable nodes from e do not overlap with the
reachable nodes from e′: E1 ∩ E2 = ∅.

Proof. We prove this by contradiction. Assume there is an event e′′ ∈ E such
that e′′ ∈ E1 ∧ e′′ ∈ E2. By construction of E1 and E2, it holds that e ∼G e′′

or e′′ ∼G e and e′ ∼G e′′ or e′′ ∼G e′. Therefore, there exists a path e ∼G e′ by
concatenating these two paths which conflicts the initial statement.

Addressing Convergence, Divergence, and Deficiency Issues 3

An event log consists of events. Each event is identified through an element
from the universe of event identifiers E . An event describes the execution of an
activity at a given time for affected objects. The universe of activities is denoted
by A, the universe of timestamps is denoted by T , and the universe of objects
is denoted by O. Each object is of a type from the universe of types OT . This
type is given by the typing mapping πtype : O → OT .

Definition 1 (Event Log). An event log is a tuple L = (E,O,OT, πobj , πact ,
πtime) consisting of

• events E ⊆ E, objects O ⊆ O, object types OT = {πtype(o) | o ∈ O},
• event-object associations πobj : E → P(O),
• event-activity mappings πact : E → A,
• event-timestamp mappings πtime : E → T .

Each object can be associated with multiple events. The sequence in which
events related to the same object occur establishes the precedence constraints
of the event log. By merging together all precedence constraints for all objects
we derive a global view of the events and how they are connected via objects’
precedence constraints. As one event can be related to multiple objects, this
global view is a graph.

Definition 2 (Event-Object Graph). Let L = (E,O,OT, πobj , πact , πtime)
be an event log. We define the events and precedence constraints of an event
log in one single object: the event-object graph EOL = (E,P). The nodes of the
event-object graph are the events of the event log, the edges are the precedence
constraints defined by the objects P = {(e, e′) ∈ E × E | e ̸= e′ ∧ ∃o∈O o ∈
πobj (e)∧ o ∈ πobj (e

′)∧¬∃e′′∈E o ∈ πobj (e
′′)∧ πtime(e) < πtime(e

′′) < πtime(e
′)}.

To analyze a process, we extract cases from the event log that describe end-
to-end runs through the process. In traditional process mining, this is trivial as
a case identifier directly identifies an end-to-end run through the process. In the
more general case (i.e., object-centric event logs), events do not refer to one case
identifier but to multiple case identifiers, i.e., objects. Case extraction refers to
the notion of assigning events and their precedence constraints to different cases.

Definition 3 (Case Extraction). Let L = (E,O,OT, πobj , πact , πtime) be an
event log with event-object-graph EOL = (E,K). To analyze the process, cases
are extracted. An extraction technique ext(L) ⊆ P+(E) extracts cases as sets of
events, where events and precedence constraints are defined by cases Cext(L) =
{(E′,K ′) | E′ ∈ ext(L) ∧K ′ = E′ × E′ ∩K}.

The result of a case extraction are, in general, graphs. In traditional process
mining, cases are assumed to be sequences, however, sequences are also special
cases of graphs [10]. Different case extraction methods have been proposed and
discussed. Van der Aalst introduces the extraction method of flattening on a
single object type, i.e., taking the objects of one object type and using their
event sequences as cases for traditional process mining [2], which has also been

4 J.N. Adams and W.M.P. van der Aalst

discussed in earlier publications addressing the data extraction from informa-
tion systems with object-centricity [9]. Adams et al. propose two methods, one
that uses connected components of the event-object graph and one that uses
connected subgraphs of a leading object type [5], also representing the cases as
graphs instead of sequences. Furthermore, Calvanese et al. describe an extraction
technique that would be equivalent to the connected-components extraction of
Adams et al. and squashing the resulting graph into a sequence [7]. We discuss
the different extraction techniques in Sec. 6.

3 Quality Issues

Extracted cases can be subject to different quality problems. These quality prob-
lems can affect downstream process analysis by providing misleading statistics,
incorrect process models, and missing information. The three quality problems
are convergence, deficiency, and divergence [2].

Definition 4. (Convergence) Let L=(E,O,OT, πobj , πact , πtime) be an event log
with event-object graph EOL=(E,K) and cases Cext(L)={(E1,K1), . . . (En,Kn)}.
Cext(L) is convergence-free iff ∀e∈E ¬∃(Ei,Ki),(Ej ,Kj)∈Cext (L) (Ei,Ki) ̸= (Ej ,Kj)∧
e ∈ Ei ∧ e ∈ Ej.

If an event is contained in two cases there is a convergence problem. Duplicated
events lead to issues in downstream-process mining, such as increased activity
counts that trigger problems in other areas like feature engineering in predictive
process monitoring.

Definition 5. (Deficiency) Let L = (E,O,OT, πobj , πact , πtime) be an event log
with event-object graph EOL = (E,K) and extracted cases Cext(L) = {(E1,K1),
. . . (En,Kn)}. The cases are deficiency-free iff ∀e∈E∃(Ei,Ki)∈Cext (L) e ∈ Ei.

If an event is contained in no case there is a deficiency problem. Missing events
lead to missing information in downstream process mining as events that could
contain important hints about activities, bottlenecks, or features are not consid-
ered.

Definition 6. (Divergence) Let L = (E,O,OT, πobj , πact , πtime) be an event log
with event-object graph EOL = (E,K) and extracted cases Cext(L) = {(E1,K1),
. . . (En,Kn)}. The extracted cases are divergence-free iff ∀(e,e′)∈E×E (e, e′) ∈
K ⇔ ∃(Ei,Ki)∈C (e, e′) ∈ Ki.

If the precedence constraints contained in the cases do not match the precedence
constraints of the event log there is a divergence problem. This means, that the
directly-follows relationships that are contained in the event log do not reflect
the ones that are represented by the cases. By our definition of case extraction,
the cases cannot contain precedence constraints that are not in the event log.
Removed constraints will lead to issues with downstream process mining tasks
such as discovery, as the resulting model will be based on incorrect precedence
constraints.

Addressing Convergence, Divergence, and Deficiency Issues 5

4 Process Executions from Connected Components

In this paper, we investigate the properties of connected-components process
execution extraction introduced by Adams et al. [5] with respect to quality issues.
Process executions are graph-based cases that are built by using the weakly
connected components of the event-object graph, i.e., merging all interdependent
objects and their precedence constraints into one case.

Definition 7 (Connected-Components Extraction). Let L = (E,O,OT,
πobj , πact , πtime) be an event log with event-object graph EOL = (E,K). The
connected-component extraction extracts graph-based cases (called: process exe-
cutions) as connected components of the event-object graph, i.e., ext cc(L) =
{E′ ∈ P+(E) | e, e′ ∈ E′ ⇔ e ∼EO e′}.

All events that are connected to each other via a path in the event-object graph
are grouped into one process execution. All precedence constraints for which
both events are in this group are added to the process execution.

5 Only Connected Components Mitigate Quality Issues

In this section, we prove that only execution extraction based on connected com-
ponents is free of convergence, deficiency, and divergence issues. To do so, we
prove that connected-components extraction does not have any quality problems
and, subsequently, prove that all techniques not employing connected compo-
nents have quality issues.

5.1 Connected Components Mitigate Quality Issues

Theorem 1. Let L = (E,O,OT, πobj , πact , πtime) be an object-centric event log
and let Cext cc(L) = {(E1,K1), . . . (En,Kn)} be extracted process executions with
connected-components extraction. Then, Cext cc(L) does not suffer from conver-
gence, divergence, or deficiency problems.

We prove this theorem by proving that connected-components extraction is
subject to neither convergence, deficiency, or divergence. For each of those, we
show that extracted cases with the corresponding quality issue cannot stem from
connected-components extraction.

Lemma 3 (Convergence Free). Let L = (E,O,OT, πobj , πact , πtime) be an
event log and let C = Cext(L) = {(E1,K1), . . . (En,Kn)} be extracted cases using
ext(L) such that ∃e∈E ∃(Ei,Ki),(Ej ,Kj)∈C (Ei,Ki) ̸= (Ej ,Kj) ∧ e ∈ Ei ∧ e ∈ Ej

(a convergence problem is present). Then C ̸= Cext cc(L), i.e., C cannot stem
from a connected-components extraction.

Proof. We prove our lemma by contradiction: Suppose we have an event that is
part of two cases, i.e., a convergence problem ∃e∈E ∃(Ei,Ki),(Ej ,Kj)∈C (Ei,Ki) ̸=
(Ej ,Kj)∧e ∈ Ei∧e ∈ Ej and both cases would stem from connected-components
extraction (Ei,Ki), (Ej ,Kj) ∈ extcc(L). For both cases, their events would
be constructed by adding all events reachable from event e, according to the
connected-components extraction, i.e., Ei = {e′ ∈ E | e ∼EO e′} and Ej = {e′ ∈

6 J.N. Adams and W.M.P. van der Aalst

E | e ∼EO e′}, i.e., Ei = Ej . Thus, (Ei,Ki) = (Ej ,Kj) which conflicts with
the definition of convergence. Therefore, an extraction with convergence issues
cannot stem from connected-components extraction.

Lemma 4 (Deficiency Free). Let L = (E,O,OT, πobj , πact , πtime) be an event
log and let C = Cext(L) = {(E1,K1), . . . (En,Kn)} be extracted cases using
ext(L) such that ∃e∈E ¬∃(Ei,Ki)∈C e ∈ Ei (a deficiency problem is present).
Then C ̸= Cext cc(L), i.e., C cannot stem from a connected-components extrac-
tion.

Proof. We prove this lemma by contradiction: We assume that {(E1,K1), . . . ,
(En,Kn)} ⊆ Cext cc(L) are cases retrieved from connected-components extrac-
tion and there is an event that is not part of a case ∃e∈E ¬∃(Ei,Ki)∈Cext cc(L) e∈Ei

Therefore, the event is not part of any case ∀(Ei,Ki)∈Cext cc(L) e /∈ Ei. Due to the
equivalence relation of connected-components extraction, it must hold that e has
n opath to any other event ∀(Ei,Ki)∈extcc(L) ∀e′∈Ei

e ≁EO e′. However, e has a
path to itself e ∼EO e, therefore, e must appear in one of the cases extracted by
connected components and cases suffering from the deficiency problem cannot
stem from connected-components extraction.

Corollary 1. Let L = (E,O,OT, πobj , πact , πtime) be an event log and {(E1,K1),
. . . (En,Kn)} = Cext cc(L) be cases form connected-components extraction. Since
they do not have convergence or divergence issues E=E1 ∪ · · · ∪ En.

If no event is missing, the set of events included in the cases corresponds exactly
to the events in the event log.

Lemma 5 (Divergence Free). Let L = (E,O,OT, πobj , πact , πtime) be an
event log and let C = Cext(L) = {(E1,K1), . . . (En,Kn)} be extracted cases
using ext(L) such that ∃(e,e′)∈E×E (e, e′) ∈ K ⇎ ∃(Ei,Ki)∈C (e, e′) ∈ Ki (a di-
vergence problem is present). Then C ̸= Cext cc(L), i.e., C cannot stem from a
connected components extraction.

Proof. We prove that an extraction with a divergence problem cannot stem
from connected-components extraction by proving both directions of the equiva-
lence relation hold for connected components: First (⇒), a precedence constraint
present in the event log must be in the cases and, second (⇐), a precedence con-
straint present in the cases must be in the event log. For the first, we assume
that {(E1,K1), . . . (En,Kn)} ∈ extcc(L) and show a contradiction.

1)⇒ Suppose there is a precedence constraint in the event log, i.e., the event-
object graph, but not in the cases ∃(e,e′)∈E×E(e, e

′) ∈ K ⇏ ∃(Ei,Ki)∈C (e, e′) ∈
Ki. This precedence constraint connects two nodes e and e′. Since all events
are covered in connected-components extraction E = E1 ∪ . . . ∪ En the event
e needs to be in one case ∃Ei ∈ {E1, . . . , En} such that e ∈ Ei. Since e has a
path to e′, e ∼EO e′ = ⟨e, e′⟩ ̸=⊥, it holds that e′ must also be in the same
case e′ ∈ Ei. However, since the precedence constraints of the case are defined
through the precedence constraints of the events in the event logKi = Ei×Ei∩K
and e, e′ ∈ Ei and (e, e′) ∈ K it holds that the precedence constraint must be

Addressing Convergence, Divergence, and Deficiency Issues 7

contained in the event log (e, e′) ∈ Ki. This is a contradiction. Therefore, an
extraction where a precedence constraint is present in the event log but not in
the cases cannot stem from connected-components extraction.

2) By definition, the precedence constraints of the extracted cases are a
subset of the ones in the event log. Therefore, this direction holds.

5.2 Only Connected Components Mitigate Quality Problems

As we have shown that connected-components extraction does not suffer from
convergence, deficiency, or divergence issues, we want to examine other extrac-
tion techniques in this section. We prove that all techniques not building process
executions from connected-components have quality issues.

Theorem 2. Let L = (E,O,OT, πobj , πact , πtime) be an event log and let C =
Cext(L) = {(E1,K1), . . . (En,Kn)} be extracted cases with another extraction
than connected-component extraction. Then, C is either composed of multiple
connected components or suffers from a convergence, divergence, or deficiency
problem.

We prove this theorem by deconstructing the definition of connected-components
extraction to list all ways in which other extraction techniques can differ from
it. These two ways are events connected by a path ending up in different cases
and events without a path ending up in the same case. For both these ways, we
show that it always introduces quality problems or boils down to an extraction
where multiple connected-components are grouped to one process execution.

Proof. Let L=(E,O,OT, πobj , πact , πtime) be an event log and let C = Cext(L) =
{(E1,K1), . . . (En,Kn)} be extracted cases with another extraction technique
than connected-component, i.e., ∃(Ei,Ki)∈C e, e′ ∈ Ei ⇎ e ∼EO e′. We break this
down into the possible conditions that would fulfill a non-connected-components
extraction. First, it may include two events in a case that are not connected by a
path ∃(Ei,Ki)∈C e, e′ ∈ Ei ∧ e ≁EO e′, or, second, it may exclude an event with a
path to another event from the same case ∃(Ei,Ki)∈C {e, e′} ⊈ Ei∧e ∼EO e′. For
both possible conditions, we will individually prove that there is a convergence,
divergence, or deficiency problem.

1) ∃(Ei,Ki)∈C e, e′ ∈ Ei ∧ e ≁EO e′ then C has a convergence, divergence, or
deficiency issue.

When two events are contained in the same case without a path ∃(Ei,Ki)∈C e, e′ ⊆
Ei ∧ e ≁EO e′ we apply the transitivity lemma (cf. Lemma 2) to show that
these two events are connected to a disjoint set of other events, E1 = {e′′ ∈
E′ | e ∼EO e′′ ∨ e′′ ∼EO e} and E2 = {e′′ ∈ E′ | e′ ∼EO e′′ ∨ e′′ ∼EO e′}
with E1 ∩ E2 = ∅. For these two event sets, we define a tautology compris-
ing a statement and its negation, implying that either the statement or its
negation must be satisfied. ∀E′′∈{E1,E2}
a) ¬∃e∈E\E′′∀e′∈E′′ e ∼EO e′ ∨ e′ ∼EO e or

b) ∃e∈E\E′′∀e′∈E′′ e ∼EO e′ ∨ e′ ∼EO e.

8 J.N. Adams and W.M.P. van der Aalst

The first part of the tautology states that there is no event outside this set
that has a path to this set’s elements. The second part states that an event
outside a set element has a path to that set’s elements. For both parts of the
tautology, we show there is a convergence, deficiency, or divergence problem
or it boils down to connected-components extraction if it is fulfilled:
a) E′′ constructs a connected component and does not induce any quality

problem (cf. Theorem 1).
b) Here we can directly apply the connecting-edge lemma (cf. Lemma 1).

∃e∈E\E′′∃e′∈E′′ e ∼EO e′ ⇒ ∃(e1,e2)∈(E\E′′×E′′) (e1, e2) ∈ K. With
e1 ∼EO e2 ∧ e2 ∈ E′′ it holds that e1 /∈ E′, as e1 would be part of
E′′ if it would be in E′ since it is connected to nodes of E′′. Therefore,
(e1, e2) /∈ E′ × E′ and following that (e1, e2) /∈ E′ × E′ ∩ K = K ′.
Therefore, a divergence problem is present unless both events are part
of another case, which would introduce a convergence problem.

2) ∃(Ei,Ki)∈C e ∈ Ei∧e′ /∈ Ei∧e ∼EO e′ then C has a convergence, divergence,
or deficiency issue.
When considering two events connected by a path but not included in the
same case, we extend the formula by adding a tautology with a statement
and its negation ∃(Ei,Ki)∈C e /∈ Ei ∧ e′ ∈ Ei ∧ e ∼EO e′∧
a) (¬∃E′′∈(E1,...,En) e ∈ E′′∨
b) ∃E′′∈(E1,...,En) e ∈ E′′)
The first part states that the event connected by a path but not in the case is
also not in the other case. The second part states that there is another case
that contains the event. Either one of the two needs to be fulfilled, therefore,
we will show that both lead to convergence, divergence, or deficiency.
a) This corresponds to the definition of a deficiency problem, i.e., an event

is in no case.
b) It holds that e ∈ E′′ ∧ e /∈ E′. We can generalize this such that e ∈

E \ E′ and apply Lemma 1. e ∈ E \ E′ ∧ e′ ∈ E′ ∧ e ∼EO e′ ⇒
∃(e1,e2)∈E\E′×E′ (e1, e2) ∈ K. Since e1 /∈ E′ it also holds that (e1, e2) /∈
E′×E′ and (e1, e2) /∈ E′×E′∩K. Therefore, the edge (precedence con-
straint) cannot be included in the case (E′,K ′). To avoid a divergence
problem, it would need to be included in another case. However, then
both events of the edge would need to be included in the case, leading
to a convergence issue since e appears in both cases. Therefore, either a
convergence or divergence issue is present.

6 Discussion, Limitations, and Implications

In this section, we discuss the relationship of our proof to traditional process
mining, draw limitations of our proof for practice, and derive the implications
for future process mining research.

6.1 Practical Limitations

Our paper has shown that case extraction can only conform to the conditions
of convergence-freeness, divergence-freeness, and deficiency-freeness when using
connected-components extraction. While these are important and foundational

Addressing Convergence, Divergence, and Deficiency Issues 9

Table 1: Different case extraction techniques and their properties. Divergence issues
that are only introduced by deficiency issues are depicted with (✓).

Extraction Technique Convergence-Free Divergence-Free Deficiency-Free

Single-Type Flattening [2]

Composite-Type Flattening [7,4] ✓ ✓
Leading-Type Extraction [5] (✓)

Maximal-Type-Set Extraction ✓ (✓)

Connected-Components Extraction [5] ✓ ✓ ✓

criteria for the correctness of event data, there are two major factors to take into
consideration: First of all, for some downstream process mining tasks, the pres-
ence of quality problems might not affect the quality of the results. For example,
when computing the cycle time of different objects, e.g., orders that are placed
and then delivered, it would not matter if some events that are shared between
orders are multiplied, as this does not affect the computation of cycle times.
Second, one might have additional conditions when extracting cases, rendering
the problem of fulfilling these conditions and mitigating quality problems infeasi-
ble. For example, requiring exactly one sales order object per case would conflict
with connected-components extraction if one connected component contains two
sales orders. This means, that mitigating convergence, divergence, and deficiency
is often infeasible in practice. For such cases, a trade-off between different quality
issues has to be made. We provide a collection of current alternative case extrac-
tion techniques along with associated quality issues in Table 1. These techniques
could also be employed if their underlying quality problems would not affect the
results of the employed analysis.

Techniques enforcing sequential, traditional cases are called flattening. All
other listed techniques produce graph-based process executions. As enforcing se-
quentiality tempers with precedence constraints, flattening techniques can never
guarantee divergence-freeness. Deficiency implies divergence, as missing events
lead to missing precedence constraints. Therefore, we depict a technique that is
only subject to divergence issues introduced by deficiency issues with a check-
mark in parentheses.

As discussed by van der Aalst [2], single-type flattening is subject to any of
the three quality problems. When choosing a single object type and considering
the event sequence of each object as a case, events might get duplicated, missing,
and precedence constraints get left out. However, single-type flattening can still
offer valuable insights into the subprocess of a single object type, especially when
considering that the whole traditional process mining pipeline can be applied.

Composite-type flattening describes an extraction technique that collects
connected objects and merges their events into an event sequence [7]. This is
equivalent to compressing the results of connected-component extraction by
Adams et al. [4] into a sequence. As it builds on connected-components, it is
free of convergence and deficiency issues. Therefore, it can produce valuable

10 J.N. Adams and W.M.P. van der Aalst

insights when precedence constraints are not important. However, divergence
issues might be very consequential for some tasks like discovery.

Leading-type extraction extracts subgraphs of the connected components
that are associated with objects of a leading type and their closest related ob-
jects of other types [5]. As the closest objects of one leading object can also
be the closest objects of another object (i.e., two sales orders having the same
delivery object), this extraction is subject to convergence. Some objects can be
left out, e.g., if they are not connected to any leading object, introducing de-
ficiency and, therefore, also divergence problems. These quality problems are
further illustrated in [6]. However, the precedence constraints within the pro-
cess execution are correctly represented. Furthermore, this extraction technique
allows to incorporate related objects, in contrast to single-type flattening.

Maximal-type-set extraction is a new extraction technique suggestion based
on the results of this paper. Consider a setting where a user has an additional
condition that the extracted cases should satisfy. An extraction technique could
eliminate a minimal set of object types such that the connected-components
extraction satisfies the condition. Under this consideration, maximal-type-set
extraction would only be subject to deficiency and deficiency-induced divergence
and could be an alternative to single-type flattening since it can incorporate
information about related objects.

6.2 Traditional Event Logs and Cases

Traditional event logs, where each event is associated with precisely one ob-
ject and all objects are of the same type, are a special case of object-centric
event logs. When constructing the event-object graph for such logs, each object
creates its own weakly-connected component, as no events are shared between
objects. Consequently, connected-components extraction aligns with the tradi-
tional case notion, resulting in one event sequence per object. This underscores
two points: First, connected-components extraction is backward compatible with
traditional process mining, i.e., if the input is a traditional event log, the process
executions correspond to cases. Second, if the information system’s underlying
events adhere to the assumption of exactly one object per event, traditional pro-
cess mining does not encounter convergence, deficiency, or divergence problems.
This assumption holds true for some information systems, like ticketing or case
management systems [12]. However, for the vast majority of information systems
this does not hold true, i.e., quality problems are to be expected when extracting
traditional cases, i.e., sequences.

6.3 Implications

The most important implication of our paper is that quality issues are unavoid-
able if there are conflicting requirements for connected components. Depending
on the planned process analysis, this could have significant effects on the qual-
ity of the results. Based on this, the second implication of our work is that
many real-life applications of object-centric process mining will have to make a
trade-off between different quality issues using different extraction techniques.

Addressing Convergence, Divergence, and Deficiency Issues 11

As we currently can only make qualitative statements (cf. Table 1), a quantita-
tive evaluation of quality issues for different extraction techniques is necessary.
Furthermore, an overview of which process analysis tasks are negatively affected
by which quality issues is necessary. Based on the trade-off spectrum between
different quality issues, new extraction techniques that inhibit unoccupied parts
of the spectrum can be proposed. These developments will bring transparency
and capabilities to dealing with quality issues in object-centric process mining.

We derive secondary implications from aligning connected-components ex-
traction with the traditional case notion: New extraction techniques should pro-
vide the traditional case concept when applied to traditional event logs and
adaptations of traditional process mining algorithms to the object-centric set-
ting should be backward compatible, i.e., if the object-centric event log is a
traditional event log, the results of the algorithm should be consistent with the
traditional process mining algorithm. This ensures the consistency of the process
mining field when moving towards object-centricity. Examples of such backward-
compatible process mining algorithms are the discovery of object-centric Petri
nets [3], which yields a standard Petri net when fed with a traditional event
log, object-centric variants [5], which produce standard variants when fed with a
traditional event log, or object-centric features [4] which would return standard
features when fed with a traditional event log. This ensures the consistency of
the process mining field.

7 Conclusion

This paper addressed the issue of quality problems in process mining when ex-
tracting cases. We proved that only case extraction based on connected compo-
nents is free of convergence, deficiency, or divergence issues. For process analysis
tasks that are negatively affected by quality issues, connected components can
yield the only case extraction that mitigates the negative impacts of convergence,
divergence, and deficiency. If there are other conditions that the extracted cases
should fulfill and these conditions conflict with connected-components extrac-
tion, mitigating quality problems is infeasible. In that situation, case extraction
is a trade-off between different quality issues. Furthermore, we have discussed
that connected-components extraction aligns with the traditional case notion of
traditional event logs. This necessitates object-centric adaptations of traditional
process mining algorithms to be backward compatible, ensuring the consistency
of the process mining field.

For future work, there should be an in-depth analysis of the impact of differ-
ent quality issues on different process analysis tasks, as well as a quantification
of quality issues for different case extraction techniques. These contributions
would deliver transparency to anyone applying case extraction to conduct pro-
cess analysis tasks by understanding the presence of quality issues, their effect
on the quality of results, and the trade-offs that can be achieved by utilizing
different case extraction techniques.

12 J.N. Adams and W.M.P. van der Aalst

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016). https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P.: Object-centric process mining: Dealing with diver-
gence and convergence in event data. In: SEFM. pp. 3–25. Springer (2019).
https://doi.org/10.1007/978-3-030-30446-1 1

3. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fundam.
Informaticae 175(1-4), 1–40 (2020). https://doi.org/10.3233/FI-2020-1946

4. Adams, J.N., Park, G., Levich, S., Schuster, D., van der Aalst, W.M.P.: A frame-
work for extracting and encoding features from object-centric event data. In: IC-
SOC. pp. 36–53. Springer (2022). https://doi.org/10.1007/978-3-031-20984-0 3

5. Adams, J.N., Schuster, D., Schmitz, S., Schuh, G., van der Aalst, W.M.P.: Defining
cases and variants for object-centric event data. In: ICPM. pp. 128–135. IEEE
(2022). https://doi.org/10.1109/ICPM57379.2022.9980730

6. Adams, J.N., van Zelst, S.J., Rose, T., van der Aalst, W.M.P.: Ex-
plainable concept drift in process mining. Inf. Syst. 114, 102177 (2023).
https://doi.org/10.1016/j.is.2023.102177

7. Calvanese, D., Montali, M., Syamsiyah, A., van der Aalst, W.M.P.: Ontology-
driven extraction of event logs from relational databases. In: BPM Workshops. pp.
140–153. Springer (2015). https://doi.org/10.1007/978-3-319-42887-1 12

8. Fahland, D.: Process mining over multiple behavioral dimensions with event
knowledge graphs. In: Process Mining Handbook, pp. 274–319. Springer (2022).
https://doi.org/10.1007/978-3-031-08848-3 9

9. Gerke, K., Mendling, J., Tarmyshov, K.: Case construction for mining supply chain
processes. In: BIS. pp. 181–192. Springer (2009). https://doi.org/10.1007/978-3-
642-01190-0 16

10. Leemans, S.J.J., van Zelst, S.J., Lu, X.: Partial-order-based process
mining: a survey and outlook. Knowl. Inf. Syst. 65(1), 1–29 (2023).
https://doi.org/10.1007/s10115-022-01777-3

11. Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015).
https://doi.org/10.1109/TSC.2015.2474358

12. Weerdt, J.D., Wynn, M.T.: Foundations of process event data. In: Process Min-
ing Handbook, pp. 193–211. Springer (2022). https://doi.org/10.1007/978-3-031-
08848-3 6

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.3233/FI-2020-1946
https://doi.org/10.1007/978-3-031-20984-0_3
https://doi.org/10.1109/ICPM57379.2022.9980730
https://doi.org/10.1016/j.is.2023.102177
https://doi.org/10.1007/978-3-319-42887-1_12
https://doi.org/10.1007/978-3-031-08848-3_9
https://doi.org/10.1007/978-3-642-01190-0_16
https://doi.org/10.1007/978-3-642-01190-0_16
https://doi.org/10.1007/s10115-022-01777-3
https://doi.org/10.1109/TSC.2015.2474358
https://doi.org/10.1007/978-3-031-08848-3_6
https://doi.org/10.1007/978-3-031-08848-3_6

	Addressing Convergence, Divergence, and Deficiency Issues

